PlasticsEdge™ Lead Generation Program: Call 978-342-9000 for details or email [email protected]

PlasticsEdge™ microsite sponsored by...

Injection Molding Reference Guide

9 Frequently Used Calculations

9.1 Intensification Ratio

The intensification ratio is a factor which is used to convert the hydraulic pressure being applied to the hydraulic injection cylinders into the actual pressure being applied to the polymer melt at the front of the screw. Since all-electric molding machines provide the actual plastic pressure, this ratio only relates to hydraulic injection molding machines.

help with injection molding

If your injection molding machine provides the actual pressure applied to the plastic, then you should not need the intensification ratio. The following three sections explain the three most common methods of calculating the intensification ratio for your injection molding machine.

9.1.1 Machine Pressure Graph Method

Many injection molding machines provide a hydraulic pressure vs. plastic pressure graph. This graph allows the molder to take a hydraulic measurement from the machine’s pressure gauge, locate it on the graph on the horizontal axis, follow the value to the graph line and then over to the left to determine its corresponding plastic pressure on the vertical Y axis.

To calculate the intensification ratio, use the graph to locate any hydraulic pressure and its corresponding plastic pressure and then divide the plastic pressure value by the hydraulic pressure.

If there are multiple lines on your pressure graph, it is because your molding machine was offered with multiple screw diameters. To use the correct line, determine which diameter screw your machine has and locate its corresponding pressure curve.

help with plastics training

9.1.2 Machine Specifications Method

The specifications for your molding machine can be located either in your machine manual, from other machine-related documentation, or from the manufacturer. The important information you need to obtain is the maximum hydraulic pressure and maximum injection pressure.

To calculate the intensification ratio, divide the injection pressure by the hydraulic pressure.

online guide for plastics processes

9.1.3 Hydraulic Cylinder Method

If you know the actual internal dimensions of your hydraulic cylinder you can calculate the exact intensification ratio of your molding machine.

To calculate the intensification ratio, multiply the number of hydraulic cylinders times the internal diameter of the hydraulic cylinder squared and then divide that result by the diameter of the screw squared.

help with injection molding guides

9.2 Drying Calculations

9.2.1 Material Consumption

Before determining the dryer residence time, as well as the mini-mum and maximum dryer size, you must first determine how much material is being used. For the calculations used in this guide, we will refer to material consumption as a measure of material usage per hour. This is typically represented as kilograms or pounds per hour.

To determine the material consumption, you must know the weight of material consumed during each cycle as well as the time used to produce the product. For injection molding, the weight of the entire shot including any parts, sprue, runners, or gates produced is mea-sured. Likewise, the cycle time is provided by the molding machine.

Use the following formula to calculate the material consumption:

help with injection molding troubleshooting

9.2.2 Dryer Residence Time

The residence time is the duration the material remains in the material dryer. Residence time is typically provided in hours. To calculate this, you will need to know the dryer capacity (in kilograms or pounds) as well as the material consumption (in kilograms or pounds per hour).

The following formula can be used to calculate the dryer residence time:

injection moulding expert

9.2.3 Dryer Capacity

The dryer capacity calculation will provide the minimum amount of material the dryer must hold to keep the material dry. Dryer size is typically provided in kilograms or pounds. To calculate this, you will need to know the recommended drying time in hours as well as the material consumption in kilograms or pounds per hour.

Use the following formula to calculate the dryer size:

plastics scientific injection moulding

9.3 Part Shrinkage

During the injection molding process, polymer is injected into the mold in the heated state. As the polymer cools, the polymer shrinks away from the mold surface. This results in a part with dimensions as much as 4% smaller than the mold dimensions. This may not sound like much, but most molded parts have very specific toler-ances which must be maintained.

Although molding technicians are rarely involved in calculating the dimensions for the mold steel, they are often asked to provide tool-makers, designers, and quality personnel with the actual shrinkage values from a similar process.

Shrinkage can be represented in one of two ways; as a ratio or as a percentage. When the amount of shrinkage that occurs is represent-ed as a ratio, the inches or millimeters cancel each other out,. As a result, a ratio of .005 in/in equals 0.005 mm/mm. This ratio means that the polymer would shrink 0.005 inch for every inch in mold cavity length. Likewise, the same ratio will imply the part will shrink 0.005 millimeter for every millimeter in mold cavity length.

Likewise, for every millimeter in mold length, the part will shrink 0.005 millimeters. To calculate the shrinkage ratio, you need to know the mold dimensions – as well as the part dimensions.

The part shrinkage equals:

plastics scientific injection moulding

9.4 Tolerances

Tolerances are typically expressed as the target value, plus or minus an acceptable tolerance. These can be placed on dimensions such as; distance, angle, diameter, or radius. In some cases, the plus dimension differs from the minus dimension.

Tolerances are typically expressed in a way which can be broken up into two different equations.

Dimension: 1.00 ± 0.01
Upper Limit: 1.00 + 0.01 = 1.01
Lower Limit: 1.00 – 0.01 = 0.99

9.5 Chiller Requirements

To determine the correct size chiller you must first determine:

scientific injection molding guide

9.5.1 Cooling Time

The following is the basic way to calculate the part cooling time:
injection molding guide

9.5.2 Total Amount of Heat to be Removed

Use the following formula to calculate the total amount of heat to be removed:
scientific injection molding guide

9.5.3 Required Cooling Power

The following formula will help to determine the overall amount of cooling power necessary:
injection molding

9.5.4 Cooling Power Per Line

Use the following formula to determine the amount of cooling power necessary per cooling line:
injection moulding

9.5.5 Required Volumetric Flow Rate

The following formula will help to determine the necessary volumetric flow rate of coolant:
injection moulding

9.6 Determining Screw and Barrel Wear

When determining the wear of the screw and barrel, it is important to first measure both the outer diameter (D screw) of the screw and the inner diameter (D barrel) of the barrel. Once the screw and barrel diameters have been measured, the actual clearance (C actual) can be calculated using the following calculation:
scientific injection moulding

As a general rule, most molding machines are designed with a radial clearance of the 0.1% of the screw diameter (D screw). To calculate the expected clearance (C Design) use the following equation:
scientific injection moulding

Once the design clearance and the actual clearance is determined,the wear (W) can be calculated using the following equation:
injection moulding

The acceptable amount of clearance is subject to the application, yet screw manufacturers typically suggest replacement or repair when this wear value reaches 0.05mm to 0.7mm (0.002” to 0.003”) wear for screws with a 5” diameter of less.

9.7 Barrel Residence Time

The barrel residence time is the average time the material remains within the barrel either within the flights or in front of the screw. The simplest method of determining this is to add colored pellets at the feedthroat and measure the time it takes for the molded part with the most prominent colorant to appear. The time required for the largest portion of colorant to travel through the barrel is the average residence time.

There are many complex methods of determining barrel residence time, but the method explained below is one of the easier methods:

First, determine the approximate amount of material in the screw flights (V flights) using the barrel diameter ( D barrel), barrel length (L barrel) and the average root diameter ( D root) of the screw. Many molders will estimate this using the screw diameter at the feed and the screw diameter at the metering section.

plastics injection online

Once the volume is determined, the weight (Wflights) of the material in the flights must be determined using the volume of material in the screw flights (V flights) and the material density (dmaterial).

plastics injection online

Once the approximate weight of material in the barrel is determined, you can use the cycle time (t cycle) and the shot weight (Wshot) to estimate the barrel residence time ( tresidence).

plastics injection online

PlasticsEdge™ microsite sponsored by...

Injection Molding Guide

Welcome to

A Better Way

It's time to upgrade your training approach with Routsis - the premier training provider for the plastics industry. Hands-on, online and ongoing, Routsis Training's RightStart™ program combines the best attributes of traditional one-to-one plastics training with a powerful, dedicated online portal that's accessible anywhere.

President's Message

Click here for a word from Andy Routsis, founder and president.

Routsis has the ideal solution for you.

Workforce Training

injection-molding-workforce-training-85x84Continuous, convenient, practical programs for the skills your organization needs to succeed.

Individual Training

injection-molding-individual-training-85x84-flippedOur effective, accessible courses help plastics professionals advance their careers.

Online Training

injection-molding-online-training-85x84Our comprehensive array of online plastics courses cover a broad range of topics and skill levels.

Online Training Portals

injection-molding-portal-training-85x84-flippedGet maximum flexibility with your company's own dedicated online plastics training portal.

Online Training Packages

injection-molding-packages-training-85x84Our exclusive online training packages deliver essential training to you or your employees.

Multi-Language Training

injection-molding-multi-language-training-85x84-flippedWe offer online plastics courses in Spanish, Portuguese, Mandarin, and Bahasa Malaysia.

SmartTech™ On-Site Training

injection-molding-on-site-training-85x84Hands-on training to help your compay imrpove efficiency, profitability, and competitive position.

Scientific SkillSet™ Labs

injection-molding-skillset-training-85x84-flippedPerform the same type of labs found in expensive seminars at your own pace, in your own facility.

RightStart™ Process

injection-molding-right-start-training-85x84Our exclusive training implementation process kick-starts your mission-critical training.

Plastics Training Knowledge Center

plastics training videos

Course Previews

Click here for free preview videos of our online plastics training programs.

injection molding reference guide

Injection Molding Reference Guide

Our handy pocket reference is now available on Android™ devices.

injection molding frequently asked questionsFAQs

Need an answer quickly? Check out our Frequently Asked Questions page.

injection molding technical support

Technical Support

Click here for resolutions to the most common technical support issues.

Training Catalog

injection molding training catalogClick here to download the latest catalog of our plastics training products.

plastics training partners

Our Training Partners

For more information about our partnerships with plastics industry and educational leaders, click here.

request_060x120Request Information

Need a fast quote?
Looking for free training demonstrations?

Click here to fill in our request form.

Get in Touch

Contact Routsis Training

Routsis Headquarters

Routsis Training, Inc.
PO Box 894
Dracut, MA (U.S.A.)

phone: (978) 957-0700
FAX: (978) 957-1860

General Info: [email protected]
Tech Support: [email protected]
Sales: [email protected]
Blog: [email protected]

Send a Message